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Definitions
Fact: a thing that is indisputably the case: Theory ⇒ Practice

Theory:       under some assumptions (solution regularity, grid regularity) FE solutions
                    should converge as O(hr) for some r>0

Practice: if these assumptions are satisfied, numerical solutions converge as O(hr) too.

Fiction: a belief or statement that is false but is often held to be  true
because it is expedient to do so: Practice ⇒ Theory

Checking that numerical solutions converge as O(hr) for smooth solutions on a limited set of
grids (usually uniform) is sufficient to declare that the code

 is implemented correctly
 is robust and will perform well on general grids
 will recover physical solutions that are less regular than required by convergence
    theory, i.e., the only side effect will be slower convergence, not reduced fidelity
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I will illustrate how things can go wrong using 3 codes for the Poisson (!)
equation implemented using FE on quadrilateral grids.

– Standard Galerkin method with Q1 elements
– Mixed Galerkin method with Q1-P0 elements
– Mixed least-squares method with Q1-Q1 and RT0-Q1 elements
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Order verification
This is what we see on a sequence of uniform grids:
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And it is exactly what the theory predicts:

So the theory seems to check out just fine…
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Let’s try some other grids

HINT: it depends on what problem you are solvingQuiz: identify the worst grid 

(A) (B) (C)

(A) & (B)   are mild perturbations of a uniform mesh
(C)   has the worst cell aspect ratio. 
All grid sequences are uniformly regular
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The Galerkin code seems to work fine

Uniform GridGrid (A)

Nodal elements have comparable
performance and are optimally

accurate on all 3 grids

Grids (B) & (C)
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2x2 Gauss points used in all cases
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But look what happens to the Mixed Galerkin!

Uniform GridGrid (A)
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Grid (B)

1

Grid (C)
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What is going on here?

 Face elements can behave differently from nodal elements
 Convergence studies must be carefully designed
 Using only uniform grids can be inconclusive!
 Tests must include strongly and weakly non-affine grids
 Choice of quadrature can change convergence too!

We were too quick to conclude that all is fine by checking the error bound
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only on uniform grids. It turns out that this bound does not hold on non-affine grids!
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This explains our results:

In the eyeball norm, grid (C) appears worse than (A) and (B)! However, the cells of (C) are,
on the average closer to affine quads, than the cells of (A) and (B)!

Why? The RT0 space does not contain constants  



Computational mathematics and algorithms  

Now let’s look at a different scenario

We take 2 different implementations of a mixed least-squares method:

– Mixed least-squares method with Q1-Q1 and RT0-Q1 elements

This is what we see on a sequence of uniform grids for a smooth solution:
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And it is exactly what the theory predicts for this method:

So the theory seems to check out just fine for both methods…

Q1-Q1Q1-RT0Q1-Q1Q1-RT0
H(div)H(div)H1H1

1.001.001.001.00BA

0.991.001.001.01LS

vectorscalar
LS vs BA
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Let’s try  another (rough) solution

Exact solution
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 Problem is driven by Neumann boundary condition (normal flux)
 Solution is physical, i.e., can be realized in an experiment
 Grid has 400 uniform elements aligned with the interfaces between the strips

From: T. Hughes, A. Masud and J. Wan, A stabilized mixed DG method for Darcy flow
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???

Δt=1.0

Q1-RT0 Q1-Q1

Recovers the physical solution! Recovers a spurious solution!

The trouble is, the spurious solution looks completely reasonable. Order
verification did not signal any trouble for the Q1-Q1 code. Imagine this scenario
in a complex multiphysics code…
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This is what happens in this test:

RT

Q1

H1

H(div)

Solution belongs to Q1-RT0 ⇒ recovered by Q1-RT0 implementation

Q1-Q1 Least-Squares: gives the best energy
norm approximation of that solution out of Q1

Least-Squares solution is a
projection onto the discrete space

 ⇓
 gives the best possible

approximation out of that space
with respect to the energy norm

But Q1⊂H1 and H1 has infinite co-dimension in H(div)!
⇒  Error > const. ⇒ Q1-Q1 LS will never converge!

 Convergence for smooth solutions does not guarantee approximation of other solutions!
 Testing on rough but physically meaningful solutions should be part of the verification
 This is accepted practice in hydro codes which are expected to work for rough solutions
 This is seldom practiced in codes for elliptic problems despite the fact that in many cases
    we can only expect, e.g., H(curl) or H(div) solution (discontinuous materials, etc)


